Evolution of radial graphs in hyperbolic space by their mean curvature
نویسندگان
چکیده
منابع مشابه
Rearrangements and Radial Graphs of Constant Mean Curvature in Hyperbolic Space
We investigate the problem of finding smooth hypersurfaces of constant mean curvature in hyperbolic space, which can be represented as radial graphs over a subdomain of the upper hemisphere. Our approach is variational and our main results are proved via rearrangement techniques.
متن کاملGraphs of Constant Mean Curvature in Hyperbolic Space
We study the problem of finding constant mean curvature graphs over a domain of a totally geodesic hyperplane and an equidistant hypersurface Q of hyperbolic space. We find the existence of graphs of constant mean curvature H over mean convex domains ⊂ Q and with boundary ∂ for −H∂ < H ≤ |h|, where H∂ > 0 is the mean curvature of the boundary ∂ . Here h is the mean curvature respectively of the...
متن کاملExistence of constant mean curvature graphs in hyperbolic space
We give an existence result for constant mean curvature graphs in hyperbolic space Hn+1. Let Ω be a compact domain of a horosphere in Hn+1 whose boundary ∂Ω is mean convex, that is, its mean curvature H∂Ω (as a submanifold of the horosphere) is positive with respect to the inner orientation. If H is a number such that −H∂Ω < H < 1, then there exists a graph over Ω with constant mean curvature H...
متن کاملHyperbolic flow by mean curvature
A hyperbolic flow by mean curvature equation, l t #cv"i, for the evolution of interfaces is studied. Here v, i and l t are the normal velocity, curvature and normal acceleration of the interface. A crystalline algorithm is developed for the motion of closed convex polygonal curves; such curves may exhibit damped oscillations and their shape appears to rotate during the evolutionary process. The...
متن کاملMean Curvature One Surfaces in Hyperbolic Space, and Their Relationship to Minimal Surfaces in Euclidean Space
We describe local similarities and global differences between minimal surfaces in Euclidean 3-space and constant mean curvature 1 surfaces in hyperbolic 3-space. We also describe how to solve global period problems for constant mean curvature 1 surfaces in hyperbolic 3-space, and we give an overview of recent results on these surfaces. We include computer graphics of a number of examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2003
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2003.v11.n4.a2